Redox Chemistry - Mark Scheme ## Q1. | Question
number | Answer | Additional guidance | Mark | |--------------------|------------------------|--|------| | (a) | balanced equation (1) | $I_2(s) + Cl_2(g) \rightarrow 2ICl(l)$ | 2 | | | all states correct (1) | Accept multiples | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---------------------------|------| | (b) | correct electronegativity values | Cl = 3.0 and I = 2.5 | 1 | | | and correct dipole diagram | δ+ I — Cl δ- | | | | | Do not award full charges | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--------------------------------|--|------| | (c)(i) | 1 mark each
correct formula | Allow 1 mark for 2 correct non-skeletal formulae | 2 | | Question number | Answer | | Additional guidance | Mark | |-----------------|--|-----|------------------------|------| | (c)(ii) | An explantion that makes reference to the following points: | | | 3 | | | identification of correct isomer | (1) | 2-chloro-1-iodopropane | | | | • iodine is $\delta \text{+}$ and is attacked by the π electrons | (1) | | | | | more stable secondary carbocation formed. | (1) | | | | Question number | Answer | | Additional guidance | Mar
k | |-----------------|---|-----|--|----------| | (d)(i) | An answer that makes reference to the following points: | | | 2 | | | carry out in fume cupboard | (1) | Allow fume hood or similar description | | | | chlorine is toxic. | (1) | Do not allow 'harmful' | | | Question number | Answer | Additional guidance | Mark | |-----------------|---|--------------------------|------| | (d)(ii) | • I in ICl = +1
I in ICl ₃ = +3 | Both needed for the mark | 1 | | Question
number | Ar | nswer | | Additional guidance | Mark | |--------------------|----|--|-----|---------------------|------| | (d)(iii) | • | +5 and -1 to -1 (and -1) | (1) | | 2 | | | • | not disproportionation because
the chlorine has not undergone
both oxidation and reduction | (1) | | | | Question
number | Ar | nswer | Additional guidance | Mark | |--------------------|----|-----------------------|--|------| | (e)(i) | • | correct method (1) | Cl ₂ = 2 × 35.5 = 71
71 ÷ 24000 | 2 | | | • | answer with units (1) | = 0.0029583 g cm ⁻³
= 3 g dm ⁻³ | | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---------------------|------| | (e)(ii) | An explanation that makes reference to the following points: | | 3 | | | chlorine (gas) is more dense (
than air | | | | | chlorine (gas) removed (from
the equilibrium) | | | | | position of equilibrium moves (to the LHS (more brown liquid/ICl). | | | | Question
number | Ar | swer | Additional guidance | Mark | |--------------------|----|---|--|------| | (f) | • | calculation of mols of iodine (1) and fluorine | Mols of iodine = $0.64 \div 126.9 = 5.04 \times 10^{-3}$
Mols of fluorine = $(1.31-0.64) \div 19 = 3.53 \times 10^{-2}$ | 2 | | | • | calculation of whole number (1) ratio and formula | Ratio 1:7 therefore formula IF ₇ | | ## Q2. | Questi
numbe | | Answer | Mark | |-----------------|---|--------|------| | (a) | 1 | 4 2.5℃ | 1 | | Question
number | Answer | Mark | |--------------------|---------|------| | (b) | C redox | 1 |