Redox Chemistry - Mark Scheme

Q1.

Question number	Answer	Additional guidance	Mark
(a)	balanced equation (1)	$I_2(s) + Cl_2(g) \rightarrow 2ICl(l)$	2
	all states correct (1)	Accept multiples	

Question number	Answer	Additional guidance	Mark
(b)	 correct electronegativity values 	Cl = 3.0 and I = 2.5	1
	and correct dipole diagram	δ+ I — Cl δ-	
		Do not award full charges	

Question number	Answer	Additional guidance	Mark
(c)(i)	1 mark each correct formula	Allow 1 mark for 2 correct non-skeletal formulae	2

Question number	Answer		Additional guidance	Mark
(c)(ii)	An explantion that makes reference to the following points:			3
	identification of correct isomer	(1)	2-chloro-1-iodopropane	
	• iodine is $\delta \text{+}$ and is attacked by the π electrons	(1)		
	more stable secondary carbocation formed.	(1)		

Question number	Answer		Additional guidance	Mar k
(d)(i)	An answer that makes reference to the following points:			2
	carry out in fume cupboard	(1)	Allow fume hood or similar description	
	chlorine is toxic.	(1)	Do not allow 'harmful'	

Question number	Answer	Additional guidance	Mark
(d)(ii)	• I in ICl = +1 I in ICl ₃ = +3	Both needed for the mark	1

Question number	Ar	nswer		Additional guidance	Mark
(d)(iii)	•	+5 and -1 to -1 (and -1)	(1)		2
	•	not disproportionation because the chlorine has not undergone both oxidation and reduction	(1)		

Question number	Ar	nswer	Additional guidance	Mark
(e)(i)	•	correct method (1)	Cl ₂ = 2 × 35.5 = 71 71 ÷ 24000	2
	•	answer with units (1)	= 0.0029583 g cm ⁻³ = 3 g dm ⁻³	

Question number	Answer	Additional guidance	Mark
(e)(ii)	An explanation that makes reference to the following points:		3
	chlorine (gas) is more dense (than air		
	chlorine (gas) removed (from the equilibrium)		
	position of equilibrium moves (to the LHS (more brown liquid/ICl).		

Question number	Ar	swer	Additional guidance	Mark
(f)	•	calculation of mols of iodine (1) and fluorine	Mols of iodine = $0.64 \div 126.9 = 5.04 \times 10^{-3}$ Mols of fluorine = $(1.31-0.64) \div 19 = 3.53 \times 10^{-2}$	2
	•	calculation of whole number (1) ratio and formula	Ratio 1:7 therefore formula IF ₇	

Q2.

Questi numbe		Answer	Mark
(a)	1	4 2.5℃	1

Question number	Answer	Mark
(b)	C redox	1